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Time series generation by multilayer networks

Liat Ein-Dor and Ido Kanter
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 12 January 1998!

The properties of time series, generated by continuous valued multilayer networks consisting of one or two
hidden layers, are studied analytically. The time series is generated by using past output values to determine the
next input vector. The main results for the generic asymptotic behavior are~a! The attractor dimension is only
a function of the number of hidden units in the first hidden layer;~b! the analytical solution for the time series
generated by the networks mirrors the structure of the network itself.@S1063-651X~98!13906-5#

PACS number~s!: 05.20.2y, 87.10.1e
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I. INTRODUCTION

The main goal of analytical research in the field of neu
networks during the past decade has been to examine
ability of various architectures to store, to retrieve, and
learn fromrandomexamples@1,2#. Nevertheless, the conten
of natural or artificial data streams is, generally speaki
expressed in the correlations, spatial and temporal, am
the data points. Hence, extending the neural network
proach to deal with time series is of great interest@3,4#.

There are two main lines of approach in the investigat
of time series. In the first approach, the time series is gi
and the following two questions must be answered:~1! is a
given network capable of learning a segment of the
quence; and~2! what is the quality of the prediction on th
part of the sequence that has not been shown to the netw
In practice, for a given time series, predictors based on id
from the realm of neural networks can be built and th
success can be compared to other linear or nonlinear pre
tors. However, as long as the statistical nature of the ex
ined sequences, their origin, and the available space for
architecture of the trained network are not well restricted
general theory cannot be established.

In the second approach, we recently studied the statis
nature of time series generated by a given network wit
particular architecture and dynamical rules. The focus is t
placed on what kinds of time series~their complexity, etc.! a
given network can generate and hence can predict accura
Of course, forecasting of a particular sequence canno
answered. However, we would like to build a classificati
of the possible outcome sequences as a function of the a
tecture and dynamical rules. This classification is a prere
site for any theoretical insight in the field of time series p
diction. For instance, the classification can answer
underlying question of which architecture has to be cho
for the predictor. Of course we would not choose an arc
tecture that is incapable of learning the sequence regard
of the particular set of weights, fixed by the learning alg
rithm.

A beginning of such classification was recently develop
@5,6# and indicates that there is an interplay between
architecture of a multilayer network with one hidden lay
and the attractor dimension (dA) of the time series generate
by the multilayer feedforward networks~MLN !, thedA being
a function of the number of hidden units@7#. This feature
571063-651X/98/57~6!/6564~9!/$15.00
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quantitatively distinguishes between the computational a
ity of MLN with a different number of hidden units. Adding
additional hidden units vastly expands the set of sequen
generable with the network.

In this paper we first report in detail results for MLN wit
one hidden layer, and enlarge the investigation to a restric
network with two hidden layers.

In Sec. II, the particular architectures and their dynami
rules are defined. In Sec. III, previous findings are brie
summarized and questions raised. In Sec. IV, results
MLN with one hidden layer are presented, and in Sec.
results are extended to MLN with two hidden layers. Resu
for a general set of weights between the input and the
hidden units are briefly discussed in Sec. VI. Conclusions
presented in Sec. VII.

II. ARCHITECTURES AND DYNAMICAL RULES

The examined architectures are multilayer feedforw
networks, with one or two hidden layers. The network w
one hidden layer is denoted asN:M :1, N input unitsSj , j
51, . . . ,N, M hidden unitss i

1 , i 51, . . . ,M and 1 output
unit out ~see Fig. 1!. The symbolWi j signifies the weight
between thej th input unit and thei th hidden unit and, for
simplicity, the weights between the hidden units and the o
put unit are set equal to 1~see Fig. 1!.

The network with two hidden layers is defined

FIG. 1. The architectureN:M :1.
6564 © 1998 The American Physical Society
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57 6565TIME SERIES GENERATION BY MULTILAYER NETWORKS
N:M :P:1, N input unitsSi , i 51, . . . ,N, M hidden units in
the first hidden layers i

1 , i 51, . . . ,M , P hidden units in the
second hidden layers i

2 , i 51, . . . ,P, and 1 output unitout
~see Fig. 2!. The symbolWi j signifies the weight between th
j th input unit and thei th hidden unit in the first layer. The
symbolwi j stands for the weight between thej th hidden unit
in the first hidden layer and thei th hidden unit in the second
hidden layer. Again, for simplicity, the weights between t
second hidden layer and the output unit set equal to 1~see
Fig. 2!.

Starting from an initial configuration for theN input units
$S1 ,S2 , . . . ,SN% the dynamics is defined as follows. Thei th
hidden unit in the first hidden layer is fixed by

s i
15ô1Fb1(

j 51

N

Wi j Sj G , ~1!

whereô1 is the activation function of the hidden units in th
first layer, which, for simplicity, is taken to be the same f
all hidden units, andb1 is the gain factor. Similarly, thei th
hidden unit in the second hidden layer is fixed by

s i
25ô2Fb2(

j 51

M

wi j s j
1G , ~2!

where ô2 is the activation function of hidden units in th
second hidden layer with a gain factorb2. The output of the
network with one hidden layer is given by

O5ôFb(
j 51

M

w̃js j
1G ~3!

and for the network with two hidden layers is given by

O5ôFb(
j 51

P

w̃js j
2G , ~4!

where in both casesw̃j denotes the weight between thej th
hidden unit ~in the last hidden layer! and the output. The
input at each successive time step is chosen as follows
inputs from the previous time step are shifted one unit to

FIG. 2. The architectureN:M :P:1.
he
e

right with the state of the leftmost input unit set equal to t
state of the output unit in the previous time step. Symbo
cally,

Sj
t115Sj 21

t j 52, . . . ,N; S1
t115Ot. ~5!

For time stepst.N one can summarize the dynamic
evolution of the networkN:M :1 by the following equation:

St5ôH b(
i 51

M

w̃j ô1Fb1(
j 51

N

Wi j S
t2 j G J , ~6!

where St is the output at timet, and of the network
N:M :P:1 by

St5ôFb (
m51

P

w̃mô2H b2(
k51

M

wmkô1Fb1(
j 51

N

Wk jS
t2 j G J G .

~7!

These equations indicate that the network generates an
nite sequence from an initial state of the input units in t
following manner. The dynamical evolution of one degree
freedom,St, depends on its values in the previousN steps
St5 f $St21,St22, . . . ,St2N%. The special form of the func-
tion f depends on the details of the architecture and the
namical rules and is explicitly given by Eqs.~6! and ~7!.

To simplify the discussion, below we restrict the para
eter space such that

b5b15b2 ~8!

and the activation function in all levels is the same:

ôi5tanh or ôi5sin. ~9!

The choice of the tanh activation function seems to be na
ral, but the mathematical simplification of the sin activati
function will be explained below.

III. QUESTIONS

In previous studies@7# we claim that a perceptron with th
same dynamical rules exhibits the following characteris
features:~a! Flows can be periodic or quasiperiodic depen
ing on the phase of the weights. A phase shift in the weig
results in a frequency shift in the output.~b! The dimension
of the attractor in the generic case is less than or equal t
regardless of the complexity of the weights. One can n
conclude that a perceptron with these dynamical rules is
pable ofgeneratingonly time series that are characterized
the attractor dimensiondA<1. Hence, under the same dy
namical rules~known in other communities as one-time-la
dynamics or sliding windows@8,9#! one can possiblylearn
and predict with a perceptron only time series which a
characterized bydA<1. We said ‘‘possibly,’’ since it is as
yet unclear whether all possible time series withdA51 can
be learned and predicted by a perceptron with freedom
choose the appropriate activation function.

The generalization of the perceptron to a MLN with o
hidden layer consisting ofM hidden units indicates that suc
a network is capable of generating time series with an inte
dA<M , where thedA increases with the gain factor. Th
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6566 57LIAT EIN-DOR AND IDO KANTER
weights and the activation functions of the hidden units a
the output unit only influence the shape of the attractor. T
detailed calculations for a MLN with one hidden layer a
presented below in Sec. IV.

However, a few questions remain to be answered.
~1! From the asymptotic behavior of the time series g

erated by a MLN with one hidden layer one can conclu
that thedA is a function of the number of hidden units, b
has no interplay with the size of the input. At this stage a f
scenarios are possible for more structured MLN with m
than one hidden layer,N:M1 :M2 : . . . :ML :1. It is plausible
that thedA is only a function of the size of the first hidde
layer M1, or that thedA is only a function of the size of the
last hidden layer, which feeds the output unitML or that the
dA is a function of the size and the order of all the hidd
layers$M1 , . . . ,ML%.

~2! The translating solution of a MLN with one hidde
layer mirrors the architecture of the network, regardless
details of the weights and the particular choice of the o
activation functions. Weights in the lowest level are ac
upon by the activation function of the first hidden layer a
then in turn acted upon by the activation function of t
output unit. The question is whether this mathemati
beauty is conserved also for more structured MLN. In
affirmative case, one can immediately find the form of t
dynamical evolution of any MLN with these dynamic
rules. Only the coefficients have to be determined explic
via careful and tedious algebra.

~3! After the previous two questions are answered, and
interplay between the details of generated time series and
architecture and the dynamical rules of the MLN can be
derstood, one may ask the following question: when is
necessary to, or what is the advantage of, increasing
number of hidden layers? More precisely, what quant
tively distinguishes between the computational ability
MLN with a different number of hidden layers, and do
adding additional layers vastly enlarge the set of sequen
that can be generated with the network?

IV. A MLN WITH ONE HIDDEN LAYER

The dynamical evolution of the networkN:3:1 ~Fig. 1!
and with tanh activation function is given by@see Eq.~6! and
Eq. ~8!#

St5tanhH b(
i 51

3

w̃i tanhFb(
j 51

N

Wi j S
t2 j G J . ~10!

Let us consider first the case where the weight vector
each one of the hidden units consists of a single Fou
component, where more structured weights are examine
simulations. In particular, let

Wi j 5Ricos@2pKi j /N#, ~11!

whereKiÞ0 denotes the wave number to thei th hidden unit
andRi is the amplitude. We assume in the following analy
cal treatment that the wave numbers$Ki% are relatively
prime, where in other cases similar solutions can be fou
The dynamical solution of Eqs.~10! and ~11! is given by
d
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St5tanhH b(
i 51

3

w̃i tanhFAicosS 2pKit

N D G J . ~12!

This solution can be verified by the expansion of Eqs.~10!
and~12! in power series ofAi . Since the presentation of th
three coupled equations forAi are involved, we present th
solution only for the case whereRi51. The constantAi ( i
51,2,3) depends onb through the equation

Ai5bN (
m51

`

Cmb2m21 (
s50

m21

(
m50

m2s21 S 2m21
2s D S 2~m2s!21

2m D
3D2~m2s2m!21

1 ~ i !D2s
0 ~ j !D2m

0 ~k!, ~13!

wherei , j , andk are three different integers representing th
three hidden units and

Dm
x ~ i !5w̃i

m (
n1 ,n2, . . . ,nm52`

`

)
r 51

m

Znr
dS (

r 51

m

n r2xD ,

~14!

Zn~ i !5 (
r51

`

g i~r! (
n50

2r21 S 2r21
n D d„2~r2n!212n…,

~15!

g i(r)52Ai
2r21(22r21)B2r /(2r)!, Cr522r(22r21)B2r /

~2r!! andBr are the Bernoulli numbers@10#. This solution is
exact for any system sizeN and a positive integer wave
numberK. We find that in a small gain regime

b,bc
i 5A 2

Nw̃i

~16!

the only solution is the trivial fixed pointSt50. At bc this
solution becomes unstable, and the system undergoes a
bifurcation to a periodic orbit of lengthN (St1N5St) char-
acterized by a nonzero amplitudeA. Numerical solutions of
Eqs. ~12!–~15! are presented in Fig. 3 forN5100 with w̃1

FIG. 3. Result of simulations for MLN with one hidden laye

100:3:1, w̃151,w̃250.95,w̃350.9 and with tanh activation func
tion. The amplitude obtained from simulations withN5100 (d)
and analytically Eqs.~12!–~16! ~solid lines!.
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57 6567TIME SERIES GENERATION BY MULTILAYER NETWORKS
51, w̃250.95, andw̃350.9. Results are found to be i
agreement with the stationary amplitude observed in sim
tions of the same system~see Fig. 3!. The system undergoe
three Hopf bifurcation transitions, following Eq.~16!, where
in each one of them one of the three hidden units beco
greater than zero (Ai.0). Note that the critical gainbc

i

scales withN21/2 whereas for the perceptronbc}1/N.
The origin of mathematical complication of the above s

lution is the use of the tanh activation function. From E
~12! one can see that thestationary solution evolves as atanh
acting over a sum oftanhand, unfortunately, no elegant wa
exists to expand in power series of A such an express.
Since we would like to solve more structured networks
observed that sin activation function should simplify the c
culations. The idea is that sin@sin(x)1sin(y)# can be written
as sin@sin(x)#cos@sin(y)#1cos@sin(x)#sin@sin(y)# where now
each term can be easily expanded using the Bessel func
@11#. More precisely, the stationary solution Eq.~12!, for the
sin activation function, is now replaced by

St5sinH b(
i 51

3

w̃isinFAicosS 2pKit

N D G J . ~17!

For simplicity, we takew̃i51 and R151 @Eq. ~11!# and
thereforeAi5A. The constantA now depends onb through
the equation

A52bNF (
p50

`

J2p11~b!/J1„~2p11!A…G
~18!

3FJ0~b!12(
p51

`

J2p~b!J0~2pA!G2

,

whereJp(x) is the Bessel function of the first kind of orde
p. Again forb,bc the only solution is the trivial fixed poin
St50. At bc @given by Eq.~16!# this solution becomes un
stable, and the system undergoes a Hopf bifurcation t
periodic orbit of lengthN (St1N5St) characterized by a

FIG. 4. Result of simulations for MLN with one hidden laye
N:3:1 andwith sin activation function. The amplitude obtaine
from simulations withN5100 (d) and analytically, Eq.~18!, (s).
a-

es

-
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nonzero amplitudeA. Numerical solutions of Eqs.~18! are
presented in Fig. 4 forN5100. Results are found to be i
agreement with the stationary amplitude observed in sim
tions of the same system~see Fig. 4!.

V. A MLN WITH TWO HIDDEN LAYERS

In this section we present the results for the architect
N:3:2:1 ~Fig. 2!, which is a prototype MLN with two hid-
den layers. In order to simplify the presentation of the a
lytical treatment we assume again thatw̃i51. The dynamical
evolution of the network with tanh activation function
given by

St5tanhH b(
i 51

2

tanhS b2(
j 51

3

wi j tanhFb1 (
m51

N

WjmSt2mG D J .

~19!

For the case where the weight vector for each one of
hidden units consists of a single Fourier component, re
tively prime @see Eq.~11!# and with Ri51 the dynamical
solution has the following form:

St5tanhFb(
i 51

2

tanhH b(
j 51

3

wi j tanhFAjcosS 2pK jt

N D G J G
~20!

Although Ri51 the solution is more involved, since th
weights between the first and the second hidden units,$wi j %,
are not identical and thereforeAiÞAj . The self-consistent
equation forA1 is given explicitly by

A15bN(
d51

`

Cdb2d21 )
i 51

2d21

(
$pi

j
52`%

`

L~pi
1 ,pi

2 ,pi
3!

3dS (
i 51

2d21

pi
121D dS (

i 51

2d21

pi
2D dS (

i 51

2d21

pi
3D , ~21!

FIG. 5. Ai vs b for the architectureN:3:2:1 with tanh activa-
tion function. The weights from the first hidden layer to the seco
one,$wi j %, are given byw1 j51,w2151,w2250.9,w2350.8. Analyti-
cal solution forAi , Eqs.~21!–~24! ~solid lines! and simulations of
this network withN51000 (d).
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and

L~p1 ,p2 ,p3!5(
i 51

2

(
m51

`

Cmb2m21 (
s50

2m21

(
m50

2m212s S 2m21
s D S 2m2s21

m DDs
p1~1,i !Dm

p2~2,i !D2m2s2m21
p3 ~3,i !, ~22!

Dm
p ~ j ,i !5 (

n1 ,n2 , . . . ,nm52`

`

)
l 51

m

Zn l
~ j ,i !dS (

q51

m

nq2pD , ~23!

Zn~ j ,i !5 (
r51

`

g~r, j ,i ! (
p50

2r21 S 2r21
p D d„2~r2p!212n…. ~24!

g(r, j ,i )5wi j 2Aj
2r21(22r21)B2r /(2r)!. This solution is again exact for any system sizeN and positive wave numbers. Fo

a small gain

b,bc5
1

N1/3
min$@2/~w111w21!#

1/3,@2/~w121w22!#
1/3,@2/~w131w23!#

1/3% ~25!

the only trivial solution isSt50, where atbc the system undergoes a Hopf bifurcation to a periodic orbit of lengthN,
characterized by a nonzero amplitude of at least one of the$Ai%. The critical gain in which each one of the hidden units in t
first hidden layer becomes nonzero scales withN21/3, but the prefactor is a function of the weights connecting the hidden u
to the output unit. As an example, the critical gain for the first hidden unit isN21/3@2/(w111w21)#1/3.

The numerical solution of Eqs.~20!–~24! is not an easy task, since Eq.~21! and Eq.~23! consist of multiple summations
over many variables which obey only one global restriction. We are able to solve numerically this set of equations p
tively, keeping terms up to the cubic terms,Ai

3 . This approximation is valid only near the first bifurcation, and was confirm
by simulations. The examination of whether the dynamical solution, Eq.~20!, is valid for a wider range of the gain factorb
can be answered by solving simultaneously Eqs.~19! and ~20!. This can be summarized by the following set of threej
51,2,3) coupled iterative equations

Aj
q11cosS 2pK jt

N D5b(
i 51

N

cosS 2pK j i

N D tanhFb (
m51

2

tanhH b(
l 51

3

wmltanhFAl
qcosS 2pKl~ t2 i !

N D G J G . ~26!

For largeq, Aj
q converges to a constant independent of the wave numbers$K j%. The asymptotic fixed point solution of thes

equations as a function ofb is given in Fig. 5, and is in an agreement with the stationary solution found in simulations on
systems. Note that the system undergoes three transitions, each one of them corresponding to a transition of one of
units in the first hidden layer.

In order to be able to solve explicitly this architecture for any givenb we now replace the tanh by sin activation functio
and, as we explained above, this modification should simplify the calculations. Similarly to Eq.~20!, the stationary solution in
this case is given by

St5sinFb(
i 51

2

sinH b(
j 51

3

wi j sinFAjcosS 2pK jt

N D G J G ~27!

and the coefficientA1, for instance, is given by

A15
bN

2 H g1~1!1g1~2!14 (
d1d250

`

J2d111~b!J2~d211!~b!@D1~x!1D1~ x̄!#J , ~28!

whereD1(x) is defined by

D1~x!5T1
1 ~C1

2 C1
3 1C2

2 C2
3 !2T2

1 ~C2
2 C1

3 1C1
2 C2

3 ! ~29!

andC6
a andT6

a are given explicitly as a function ofx by

C6
a 5

1

2 FJ0~x6
a !6J0~x7

a !12(
k51

`

@J2k~x6
a !6J2k~x7

a !#J0~2kAa!G , ~30!
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T6
a 52(

k50

`

@J2k11~x1
a !1J2k11~6x2

a !#J1@~2k11!Aa#, ~31!

ga~ i !58J0~b! (
d50

`

J2d11~b!F (
k150

`

J2k11@bwia~2d11!#J1@~2k11!Aa#Gp j Þa
3 $J0~bwi j !@2d11#

12(
k51

`

J2k@bwi j ~2d11!#J0~2kAj !% ~32!
Eq
is
a
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a
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andx6
a 5b@(2d111)w1a62(d211)w2a#. The definition of

D( x̄) @see Eq.~28!# is similar with x̄6
a 5b[(2d111)w2a

62(d211)w1a]. Although the form of Eqs.~28!–~31!
seems to be complicated, they are much simpler than
~22!–~24! for the tanh activation function. The difference
that the equations for the sin activation function consist
most of onlythreesummations whereas for the tanh activ
tion function the multiple summation is unbounded. A so
tion of Eqs. ~28!–~31! for a particular set of$wi j % is pre-
sented in Fig. 6, and an agreement between simulations
the analytical treatment is observed.

Note that lifting the degeneracy among the Hopf bifurc
tion transitions of the hidden units in the first layer,bc

i

Þbc
j , can be achieved in the following two ways:~a! lifting

the degeneracy in the coming weights to these units,RiÞRj
@Eq. ~11!#, ~b! lifting the degeneracy in the outcomin
weights from these units,w̃iÞw̃j in the case of anN:M :1
architecture~see Fig. 3! or by choosingwi j Þwkl in the case
of N:M :P:1 ~see Figs. 5 and 6!.

VI. MORE STRUCTURED WEIGHTS

The extension of the analytical results from on
component weights between the input units and the first

FIG. 6. Ai vs b for the architectureN:3:2:1 with sin activation
function. The weights from the first hidden layer to the second o
$wi j %, are given byw1 j51,w2151,w2250.9,w2350.8. Analytical
solution forAi , Eqs.~27!–~32! ~solid lines! and simulations of this
network withN51000 (d).
s.

t
-
-

nd

-

-
-

den layer@see Eq.~11!# seems to be possible in some limite
cases. However, the full analytical treatment for any set
weights,Wi j , and for any gain factor is beyond our abilit
and was examined mainly numerically and only within t
framework of tanh activation functions. In order to simpli
the following discussion let us distinguish between the f
lowing two major classes ofN:M :1 systems~with w̃i51).

A. Nonoverlapping power spectrum

The power spectrum of the weights of any pair of hidd
units does not contain a common wave number with a n
zero amplitude~or even almost the same nonzero wave nu
ber!. More precisely, let us define the power spectrum of
weights to ther th hidden units to be diluted and to consi
of only the following r m nonzero components
$Kr 1

,Kr 2
, . . . ,Kr m

% with the following constraint: uKr m

2Ksn
u@1 for any pair of hidden unitsr ands ~and also for

r 5s).
The prototypical case of this class is the architect

N:M :1 where the weights for each one of the hidden un
consist of only one nonzero component in the power sp
trum

Wi j 5RicosF2pKi j

N
2pf i G , ~33!

which is the generalization of the pure cos case, Eq.~11!.
The wave numbers$Ki% are chosen to be relatively prime

e,
FIG. 7. Numerical results fors t11 vs s t @see. Eq.~1!# for

N:3:1 with N5500, b1;1.65bc and Ki531,117,231, f iA2
50.1,0.05,0.01,Ri51.0,0.9,0.8 forj 51,2,3.
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6570 57LIAT EIN-DOR AND IDO KANTER
Results for the stationary solution are similar to that of E
~12!, but with the following modifications. The critical gain
for each one of the hidden units, is a function of both t
amplitude and the phase,bc

i 5bc
i (Ri ,f i). For the case

N:3:1, for instance, one can show that

bc
i 5A 2

NRi

pf i

sin~pf i !
, ~34!

where in general the critical gain increases with the abso
value of f. Second, forK@1 one can show that a phas
shift, f, in the weights results in a frequency shift,

K→K2f ~35!

in Eq. ~12! @with some higher harmonic corrections
O(1/K)#. Since a randomf is irrational, the flow is now
quasiperiodic,dA51, instead of periodic as for thef50
case,dA50. Each one of the hidden units becomes nonz
at a different gain following Eq.~34!, and acts as an inde
pendent oscillator. Note that since there is an interplay
tween the phase and the amplitude,bc5bc(R,f), the first
hidden unit that undergoes a transitionis not necessarily the
one with the largest amplitude. Numerical results forN:3:1
with N5500, andKi531,117,231,f iA250.1,0.05,0.01 and
Ri51.0,0.9,0.8 fori 51,2,3 are presented in Figs. 7 and
For each one of the hidden units thedA51. This attractor is
characterized by a dominating peak of the power spectrum
Ki2f i with additional higher harmonic terms.

Note that since the power spectrum,PK , of cos@2p(Kj
2f)/N# decays asymptotically asPK2K j

}1/uK2K j u, the

constraint thatuKi2K j u@1 is necessary for each hidden un
to behave as an independent oscillator. This is indeed
case for finiteM , N→` and where the power spectrum

FIG. 8. The power spectrum of the output ofN:3:1 defined in
Fig. 7.
.
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each one of the hidden units consists of only afinite random
numberof components with nonzero amplitudes. In such
realization bothKr m

andKr m
2Ksn

are ofO(N).

B. Overlapping power spectrum

The power spectrum of at least one pair of hidden un
has some common components with nonzero amplitude
is clear that the case of random weights belongs to this cl
However, let us first analyze analytically the following pr
totypical case. The architecture isN:2:1 and theweights for
each one of the two hidden units consist of only two nonz
pure cos@see Eq.~11!# with the wave numbersK1 andK2,
which are relatively prime. The four amplitudes areRi j ,
where the indexi labels the hidden unit andj indicates the
wave number. One can show that the critical gains for
two hidden units are given by

bc
15A 2

N~R111R21!
, bc

25A 2

N~R221R12!
. ~36!

It is clear that in the case thatK1, for instance, dominates th
power spectrum of both the weights for the first and t
second hidden units, the power spectrum of the time se
generated by the network consists of only one nonzero c
ponentK1 ~plus higher harmonic terms!. Both hidden units
are locked ontoK1. For general amplitudesRi j , one can run
iteratively the equations for the amplitudes of the solutio
$Ai j

q11% as a function of$Ai j
q %, similar to Eqs.~10!–~12!.

More precisely, the time series is given by

St5tanhH b(
i 51

2

tanhF (
j 51

2

Ai j cosS 2pKi j t

N D G J ~37!

and the iterative equations for theAi j are given by

FIG. 9. TheN:2:1 networks are classified in the two dimen
sional spaceD15R21/R11 andD25R12/R22. The presented simu
lations are forD15D250.6, N5512, b151.1bc , K15177, K2

5131.
Amn
q11cos~Knt !5bRmn(

j 51

N

cosS 2pKnj

N D tanhH b(
i 51

2

tanhF(
l 51

2

Ail
q cosS 2pKl~ t2 j !

N D G J . ~38!
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The iterative solution of Eq.~38! indicates that the two-
dimensional spaceD15R21/R11 andD25R12/R22 splits into
the following two regimes. In the first regime there is on
one attractor in which the two hidden units~and the output!
are locked onto one of the components,K1 or K2. Hence, the
number of nonzero components in the power spectrum
each one of the hidden units and that of the output is equa
one. In the second regime each one of the hidden units
lows bothK1 andK2, and hence there are two nonzero co
ponents in the power spectrum.~Note that in simulations in a
subspace of the second regime it was found that both of
attractors with one or two nonzero components exist.! A re-
sult of a simulation of 512:2:1 in the first regime is pre-
sented in Fig. 9, where the power spectrum of the time se
generated by the output consists of one nonzero compon
A result of simulation in the second regime is presented
Fig. 10, where the power spectrum of each one of the hid
units consist of two nonzero components.

A similar picture occurs where a pure cos is replaced
one component in the power spectrum, Eq.~33!. For the
regime where both the hidden units are locked onto one
the components thedA is equal to one, and in the secon
regime thedA of both the hidden units and the output un
~the time series! is equal to two. Note that in contrast to th
nonoverlapping case where each hidden unit behaves a
independent oscillator withdA51, here thedA52 for each
one of the hidden units and for the output, and furtherm
the hidden units undergo a transition to a nonzero amplit
simultaneously at the same gain. Results of simulations for
N:2:1 with N5512, Ki5131,177, f11A250.1, f12A2
50.9, f21A250.2, f22A250.4, b55bc for two different
sets of amplitudes are presented in Fig. 11 and Fig. 12
Fig. 11 thedA52 for each one of the two hidden unit
where in Fig. 12 thedA51.

Note that the critical gain is given bybb1}2/N @see Eq.
~16!#, where in simulationb was fixed to be ofO(1) and
only b1 was increased. This was done in order to enlarge
regime of the gain where the output is far from saturati
output→1, which is the bit-generator case@12#. Simulations
indicate that the above picture, that the maximaldA52,
holds forb1@50bc , for N5500.

The generic time series generated by the output of a
work N:M :1 with random weights Wi j ~without bias P0

FIG. 10. The same as Fig. 9, but withD15D250.3.
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50) is similar to the overlapping two-component case in
following sense. As the gainb increases, some of the hidde
units undergo a transition to their common dominated wa
numberK1, for instance. ThedA of the output is one.~The
equation for the critical gain is similar to Eq.~36! but the
effect off and that of higher harmonic terms in the weigh
have to be taken into account!. As the gain increases, it i
plausible that a second wave number is taking place and
dA52. Note that the scenario in which each one of the h
den units acts as an independent oscillator is found to be
rare in the case of random weights.

VII. CONCLUSIONS

The properties of time series generated by multilayer n
works consist of one and two hidden layers, are studied a
lytically and numerically. The detailed analytical treatment
limited to the architecturesN:2:1,N:3:1, andN:3:2:1. The
main results at high gains but far from saturation where

FIG. 11. The logarithm of the power spectrum of the local fie
b( j 51

N Wi j Sj , @see Eq.~1!#, measured in simulations ofN:2:1 with
N5500, Ki5131,177, f11A250.1, f12A250.9, f21A250.2,
f22A250.4, R1151.0, R1250.2, R2150.1, R2251.0, and b
55bc . The dashed line is for the first hidden unit and the full lin
is for the second one.

FIG. 12. The logarithm of the power spectrum of the local fie
b( j 51

N Wi j Sj , @see Eq.~1!#, measured in simulations forN:2:1
with N5500, Ki5131,177, f11A250.1, f12A250.9, f21A2
50.2, f22A250.4, R1150.8, R1250.2, R2150.3, R2251.0, and
b55bc . The dashed line is for the first hidden unit and the full lin
is for the second one.
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output is almost 1 are as follows:
~a! The dA is only a function of the number of hidde

units in the first hidden layer. More precisely, thedA in-
creases with the gainb and is bounded by the number o
hidden units in the first layer~at least far from saturation!. ~b!
Translating solution schematically mirrors the architecture
the network itself: weights in the lowest level are acted up
by the activation function of the first hidden units, and
turn acted upon by the activation function of the second h
den units, etc.~c! Increasing the number of hidden laye
changes the critical gain dramatically. In general, the criti
gain is}N21/(d11), whered is the number of hidden layers
~d! In the case of nonoverlapping power spectrum, each
den unit is an independent oscillator with adA51. ThedA of
the whole network is equal to the sum of independent os
lators. ~e! For overlapping power spectrum there are tw
te

.

ev
f
n

-

l

d-

il-

possible scenarios. In the first scenario, the hidden units
locked onto one of the dominated common components
the power spectrum such that thedA of each hidden unit and
that of the output is equal to one. In the second scenario,
dA of each hidden unit and that of the output is equal to t
~besides a plausible attractor withdA51).

There are still many questions to be answered, in part
lar the nature of the solution at highb near saturation and in
particular with periodic activation functions like sin.
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