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Time series generation by multilayer networks
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The properties of time series, generated by continuous valued multilayer networks consisting of one or two
hidden layers, are studied analytically. The time series is generated by using past output values to determine the
next input vector. The main results for the generic asymptotic behavigeglée attractor dimension is only
a function of the number of hidden units in the first hidden layierthe analytical solution for the time series
generated by the networks mirrors the structure of the network ifS1063-651X%98)13906-5

PACS numbsdis): 05.20-y, 87.10:+e

I. INTRODUCTION guantitatively distinguishes between the computational abil-
ity of MLN with a different number of hidden units. Adding
The main goal of analytical research in the field of neuraladditional hidden units vastly expands the set of sequences
networks during the past decade has been to examine tigenerable with the network.
ability of various architectures to store, to retrieve, and to In this paper we first report in detail results for MLN with
learn fromrandomexampleg1,2]. Nevertheless, the content one hidden layer, and enlarge the investigation to a restricted
of natural or artificial data streams is, generally speakingnetwork with two hidden layers.
expressed in the correlations, spatial and temporal, among In Sec. Il, the particular architectures and their dynamical
the data points. Hence, extending the neural network apules are defined. In Sec. lll, previous findings are briefly
proach to deal with time series is of great inter&s]. summarized and questions raised. In Sec. IV, results for
There are two main lines of approach in the investigationMLN with one hidden layer are presented, and in Sec. V
of time series. In the first approach, the time series is givefiesults are extended to MLN with two hidden layers. Results

and the following two questions must be answer@g:is a  for a general set of weights between the input and the first
given network capable of learning a segment of the sehidden units are briefly discussed in Sec. VI. Conclusions are
quence; and2) what is the quality of the prediction on the Presented in Sec. VII.

part of the sequence that has not been shown to the network.

In practice, for a given time series, predictors based on ideas ||. ARCHITECTURES AND DYNAMICAL RULES

from the realm of neural networks can be built and their ) _ )

success can be compared to other linear or nonlinear predic- The examined architectures are multilayer feedforward
tors. However, as long as the statistical nature of the exanfl€tworks, with one or two hidden layers. The network with
ined sequences, their origin, and the available space for tHghe hidden layer is denoted AsM:1, N input unitsS;, |
architecture of the trained network are not well restricted, &1, - .. N, M hidden unitso{, i=1,...,M and 1 output
general theory cannot be established. unit out (see Fig. 1L The symboIWi]- signifies the weight

In the second approach, we recently studied the statisticdletween thejth input unit and théth hidden unit and, for
nature of time series generated by a given network with &implicity, the weights between the hidden units and the out-
particular architecture and dynamical rules. The focus is theut unit are set equal to (see Fig. 1
placed on what kinds of time seriéheir complexity, etd.a The network with two hidden layers is defined as
given network can generate and hence can predict accurately.
Of course, forecasting of a particular sequence cannot be
answered. However, we would like to build a classification
of the possible outcome sequences as a function of the archi-
tecture and dynamical rules. This classification is a prerequi-
site for any theoretical insight in the field of time series pre-
diction. For instance, the classification can answer the
underlying question of which architecture has to be chosen
for the predictor. Of course we would not choose an archi-
tecture that is incapable of learning the sequence regardless
of the particular set of weights, fixed by the learning algo-
rithm.

A beginning of such classification was recently developed
[5,6] and indicates that there is an interplay between the
architecture of a multilayer network with one hidden layer
and the attractor dimensionl{) of the time series generated
by the multilayer feedforward networkSILN ), thed, being
a function of the number of hidden unifg]. This feature FIG. 1. The architectur&l:M:1.
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right with the state of the leftmost input unit set equal to the
state of the output unit in the previous time step. Symboli-
cally,

S*t=s_, j=2,...N; St=0. (5)

For time stepg>N one can summarize the dynamical
evolution of the networlN:M:1 by the following equation:

J , (6)

where S' is the output at timet, and of the network
N:M:P:1 by

N
/311_21 Wij s

M
sr:a[ggl Wb

FIG. 2. The architectur&l:M:P:1.

P M N
Si=o 3m§=)1 vaaz[ /3221 W01 /;1;1 ijsti]H.
N:M:P:1, N input unitsS;, i=1,... N, M hidden units in (7)
the first hidden layes!, i=1,... M, P hidden units in the
second hidden layer?, i=1,... P, and 1 output unibut These equations indicate that the network generates an infi-

(see Fig. 2 The symboMV;; signifies the weight between the nite sequence from an initial state of the input units in the

jth input unit and theth hidden unit in the first layer. The following manner. The dynamical evolution of one degree of

symbolw;; stands for the weight between thi hidden unit frteedontw_,f, td_ezpendstc_)rgl its values in the previoNssteps

in the first hidden layer and thi¢h hidden unit in the second S=f{S™,S7%,... §7%}. The special form of the func-

hidden layer. Again, for simplicity, the weights between thetion f depends on the details of the architecture and the dy-

second hidden layer and the output unit set equal tsee ~ Namical rules and is explicitly given by Eq®) and (7).

Fig. 2). To simplify the discussion, below we restrict the param-
Starting from an initial configuration for this input units ~ €ter space such that

{S1,S,, . ..,Sy} the dynamics is defined as follows. Thié o g

hidden unit in the first hidden layer is fixed by B=B1=p2 8)

and the activation function in all levels is the same:

N
,31;1 Wi S|,

1_ 74 ~ ~
o7 =01 @) o;=tanh or o,=sin. 9)
The choice of the tanh activation function seems to be natu-
ral, but the mathematical simplification of the sin activation
function will be explained below.

whereo, is the activation function of the hidden units in the
first layer, which, for simplicity, is taken to be the same for
all hidden units, angB, is the gain factor. Similarly, théth
hidden unit in the second hidden layer is fixed by

Ill. QUESTIONS
2 A % 1 In previous studief7] we claim that a perceptron with the
i =0z :32].=1 Wij oy | @ same dynamical rules exhibits the following characteristic

featuresia) Flows can be periodic or quasiperiodic depend-

ing on the phase of the weights. A phase shift in the weights

results in a frequency shift in the outpudb) The dimension

of the attractor in the generic case is less than or equal to 1,

regardless of the complexity of the weights. One can now

conclude that a perceptron with these dynamical rules is ca-

3 pable ofgeneratingonly time series that are characterized by
the attractor dimensiod,<1. Hence, under the same dy-
namical rulesknown in other communities as one-time-lag

and for the network with two hidden layers is given by ~ dynamics or sliding window$8,9]) one can possibljyearn

and predict with a perceptron only time series which are

characterized byl,<1. We said “possibly,” since it is as

21 (4) yet unclear whether all possible time series wdit=1 can

be learned and predicted by a perceptron with freedom to

choose the appropriate activation function.

where in both case@j denotes the weight between ti The generalization of the perceptron to a MLN with one

hidden unit(in the last hidden layg¢rand the output. The hidden layer consisting d#l hidden units indicates that such

input at each successive time step is chosen as follows: trenetwork is capable of generating time series with an integer

inputs from the previous time step are shifted one unit to thel,<M, where thed, increases with the gain factor. The

where 62 is the activation function of hidden units in the
second hidden layer with a gain fact8s. The output of the
network with one hidden layer is given by
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weights and the activation functions of the hidden units and 1.0
the output unit only influence the shape of the attractor. The
detailed calculations for a MLN with one hidden layer are
presented below in Sec. IV.

However, a few questions remain to be answered.

(1) From the asymptotic behavior of the time series gen- 06 -
erated by a MLN with one hidden layer one can conclude p
that thed, is a function of the number of hidden units, but
has no interplay with the size of the input. At this stage a few 04
scenarios are possible for more structured MLN with more

0.8 -

that thed, is only a function of the size of the first hidden 0271
layer M 4, or that thed, is only a function of the size of the
last hidden layer, which feeds the output uMit or that the 0.0 ¢ o—lo—o0—o
0.140 0.145 0.150 0.155

d, is a function of the size and the order of all the hidden
layers{M4, ... ,M}.

(2) The translating solution of a MLN with one hidden  FIG. 3. Result of simulations for MLN with one hidden layer
layer mirrors the architecture of the network, regardless ofgo:3:1,,=17,=0.95W,=0.9 and with tanh activation func-
details of the weights and the particular choice of the oddion, The amplitude obtained from simulations wik=100 (@)
activation functions. Weights in the lowest level are actedand analytically Eqs(12)—(16) (solid lines.
upon by the activation function of the first hidden layer and

then in turn acted upon by the activation function of the 3 2K t
output unit. The question is whether this mathematical Stztanr{ B> V\,itanr{Aicog( : ) ] (12)
beauty is conserved also for more structured MLN. In an i=1 N

affirmative case, one can immediately find the form of the i » )

dynamical evolution of any MLN with these dynamical This solution can be verified by the expansion of Eds)

rules. Only the coefficients have to be determined explicitly@d(12) in power series of; . Since the presentation of the

via careful and tedious algebra. three coupled equations fdy; are involved, we present the
(3) After the previous two questions are answered, and th&olution only for the case whei=1. The constan&; (i

interplay between the details of generated time series and the1,2,3) depends op through the equation

architecture and the dynamical rules of the MLN can be un- " p—1 p—s—1

derstood, one may ask the following question: when is it A=pNS C.gtS S 2M—1) Z(M—S)—l)

necessary to, or what is the advantage of, increasing the" =T &0 = 2s 2m

number of hidden layers? More precisely, what quantita- L oo

tively distinguishes between the computational ability of XD3p—s-m-1(1)D2s(])Dom(K), (13

MLN with a different number of hidden layers, and does o ) . .

adding additional layers vastly enlarge the set of sequence¥herei, j, andk are three different integers representing the

that can be generated with the network? three hidden units and
© m m
IV. A MLN WITH ONE HIDDEN LAYER DX (i)=w;" > L r]i[1 Zvr5< ;1 v—x]|,
The dynamical evolution of the netwotk:3:1 (Fig. 1) e ) ) (14)
End(\év)i'jh tanh activation function is given lpgee Eq(6) and 3
g

2p—1 2p_1
Z,h=2 »(p) 2 ( N )5(2(p—n>—1—v),
p=1 n=0

3 N
S‘=tan?‘{ ,6’2 Vvitan?‘{ﬁz Wi]-StJ”. (10) (15
- "l ¥i(p)=2A2 {220~ 1)B,, I(2p)!, C,=22(2%—1)B,,/

Let us consider first the case where the weight vector fof2?)! @ndB, are the Bernoulli numbeifd.0]. This solution is

each one of the hidden units consists of a single Fourie?xacé foKr a\llr\}y fs_,yzterr]n ‘Q."ZN and”a p_osmv_e Integer wave
component, where more structured weights are examined jjumberk. We find that in a small gain regime

simulations. In particular, let 5
<p.= \/ = 16
W;; =Ricog 27K;j/N], (11 B<PBe Nw. (16)

whereK;#0 denotes the wave number to ik hidden unit  the only solution is the trivial fixed poir'=0. At 3, this
andR; is the amplitude. We assume in the following analyti- Solution becomes unstable, and the system undergoes a Hopf
cal treatment that the wave numbeft;} are relatively bifurcation to a periodic orbit of lengthl (S"*N=S') char-
prime, where in other cases similar solutions can be founcicterized by a nonzero amplituée Numerical solutions of

The dynamical solution of Eq$10) and(11) is given by Egs.(12—(15) are presented in Fig. 3 fad=100 with w,
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FIG. 4. Result of simulations for MLN with one hidden layer FIG. 5. A; vs B for the architecturéN:3:2:1 with tanh activa-
N:3:1 andwith sin activation function. The amplitude obtained tion function. The weights from the first hidden layer to the second
from simulations withN= 100 (@) and analytically, Eq(18), (O). one,{wj;}, are given bywy;=1w,;=1,W,,=0.9Wp3=0.8. Analyti-

cal solution forA;, Egs.(21)—(24) (solid lines and simulations of
=1, W,=0.95, andw;=0.9. Results are found to be in this network withN=1000 (@).
agreement with the stationary amplitude observed in simula- ] ] ]
tions of the same systefsee Fig. 3 The system undergoes Nonzero ampllt_ude!\. Numerical solutions of EqY18) are
three Hopf bifurcation transitions, following EL6), where ~ Presented in Fig. 4 foN=100. Results are found to be in
in each one of them one of the three hidden units becomeadreement with the stationary amplitude observed in simula-
greater than zeroA;>0). Note that the critical gaing, tions of the same systefsee Fig. 4.
scales withN~ Y2 whereas for the perceptrgByo 1/N.

The origin of mathematical complication of the above so- V. AMLN WITH TWO HIDDEN LAYERS

lution is the use of the ta_nh activatio_n function. From Eq. In this section we present the results for the architecture
(12) one can see that thetationary solution evolves astanh N:3:2:1 (Fig. 2, which is a prototype MLN with two hid-

acting over a sum diinhand, unfortunately, no elegant way den layers. In order to simplify the presentation of the ana-

exists to expand in power series of A such an expressior|1 tical treat X in that=1. The d ical
Since we would like to solve more structured networks we”'c& reatment we assume again gt=1. The dynamica

observed that sin activation function should simplify the Cal_eyolutitc))n of the network with tanh activation function is
culations. The idea is that $8in(x)+sin(y)] can be written given by
as sifisin(x)Jcogsin(y)]+cogsin(x)]sinsin(y)] where now 2 3 N
each term can be easily expanded using the Bessel functiongt— {5, tan}‘( w--tam‘{ W StmD _
[11]. More precisely, the stationary solution E2), for the '82'1 '821'21 . 'Blm§=:1 im

sin activation function, is now replaced by (19
3 For the case where the weight vector for each one of the
St=sinj B>, W;sin A;co (17)  hidden units consists of a single Fourier component, rela-
i=1 N tively prime [see Eg.(11)] and with Rj=1 the dynamical

_ solution has the following form:
For simplicity, we takew;=1 andR;=1 [Eq. (11)] and

thereforeA;=A. The constanA now depends o through . 2 3 27Kt
the equation S=tan ,821 tan ,8]2::1 wj;tanh) A;co N

(20

oo

AZZBNLZO ‘]2p+1(:3)/31((2p+1)A)} Although R;=1 the solution is more involved, since the
(18 weights between the first and the second hidden ufitg},

2 are not identical and therefor#A;. The self-consistent

% equation forA; is given explicitly by

Jo<ﬂ>+2p§1 Jop(B)3o(2pA)

oo 26—-1 o0
whereJ,,(x) is the Bessel function of the first kind of order A1=BN521 CsB%° 1 H E L(pi,p?.pd)

p. Again for 8< . the only solution is the trivial fixed point =1 {pl=-=)

S'=0. At B [given by Eq.(16)] this solution becomes un- 26-1 26-1 26-1

stable, and the system undergoes a Hopf bifurcation to a ) 119 5( 2| s 3 21
periodic orbit of lengthN (S'*N=5") characterized by a izl P ;1 P izl piJ. (2D
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and

2 0 2u—12pu—1-s
2u—1\(2u—s—1
L(P1.P2Pe)=2 2 Cu™ 12 X ( s )( “m )DSl(lJ)D,&Z(z,i)DS;Sml(&i), (22

=1 pu=1 m=0

DRG.H= X _xlljlzyl<j.i>5(§1vq—p), (23

2p—1

JI)—Z y(me

20— )5(2(p—p>—1— ). (24)

v(p,j ,i)=w”2A12”’1(229— 1)B,,/(2p)!. This solution is again exact for any system sit@nd positive wave numbers. For
a small gain

1
B<Bc= N MIN{[ 2/(W 3+ Wo1) 123 [ 2/(Wy o+ Wop) 1M [ 2/(Wy 3+ Wog) 1+ (25

the only trivial solution isS'=0, where atB3, the system undergoes a Hopf bifurcation to a periodic orbit of lemth
characterized by a nonzero amplitude of at least one ofAkle The critical gain in which each one of the hidden units in the
first hidden layer becomes nonzero scales WitH'3, but the prefactor is a function of the weights connecting the hidden units
to the output unit. As an example, the critical gain for the first hidden uiti&d 2/(w;+w,;) 12,
The numerical solution of Eq$20)—(24) is not an easy task, since E@1) and Eq.(23) consist of multiple summations
over many variables which obey only one global restriction. We are able to solve numerically this set of equations perturba-
tively, keeping terms up to the cubic term!q",. This approximation is valid only near the first bifurcation, and was confirmed
by simulations. The examination of whether the dynamical solution(Hj), is valid for a wider range of the gain fact@r
can be answered by solving simultaneously E4G®) and (20). This can be summarized by the following set of thrge (

=1,2,3) coupled iterative equations
° 27K, (t—1)
tan}‘{ E tan?‘{ ,BIE Wm|tan}{Aﬁco{lT) H (26)
=1

N
27Kt
A?”cos( 2 5{

For largeq, A? converges to a constant independent of the wave nurjBg}s The asymptotic fixed point solution of these
equations as a function @ is given in Fig. 5, and is in an agreement with the stationary solution found in simulations on finite
systems. Note that the system undergoes three transitions, each one of them corresponding to a transition of one of the hidden
units in the first hidden layer.

In order to be able to solve explicitly this architecture for any giyewe now replace the tanh by sin activation function
and, as we explained above, this modification should simplify the calculations. Similarly t8@gathe stationary solution in

this case is given by
Aco N (27)

2 3
S‘=sir{,8_zl sin[ B_El wi;sin
i= i=

and the coefficienA,, for instance, is given by
AN .
A= | 71(1)+71(2)+4 ZO J25,+1(B) Iz, 1)( B[ D*(x) + DX x)]} (28)
whereD?(x) is defined by
DY(x)=Ti(c2cd +c2cd)-T(cicd+c2c?) (29)
andC% andTS are given explicitly as a function of by

[’

1
CL=5|Jo(Xx2) = Jo(x3) + 221 [J2k(X5) +Jak(X5) 130(2KA,) | (30
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©

Ti= ZIZO [Jok+1(X3) + Joks 1(EXE) ][ (Zk+1)A,], (31)

[

Yal)=830(8) 2 J2541(B)| 2 Jocsal AWia(20+ DII[(2k+ 1A] 77, {Io(Bwi)[26+1]

o]

+2k§:‘,1 Jo BW;j(26+1)130(2KA))} (32)

andx$ =B[(26,+1)w;,*2(5,+1)w,,]. The definition of  den layefsee Eq(11)] seems to be possible in some limited
D(;) [see Eq.(28)] is similar with ;1213[(2 81+ 1)Ws,, cases. However, the full ane}lytical trgatment for any sgt of
+2(8,+1)w,,]. Although the form of Egs.(28—(31) weights,W;; , a_nd for any gain fac_tor is beyond our a_blllty
seems to be complicated, they are much simpler than Eq&nd was examined mainly numerically and only within the
(22)—(24) for the tanh activation function. The difference is framework of tanh activation functions. In order to simplify
that the equations for the sin activation function consist afh® following discussion let us distinguish between the fol-
most of onlythree summations whereas for the tanh activa-lowing two major classes dfi:M:1 systemgwith w;=1).

tion function the multiple summation is unbounded. A solu-

tion of Egs.(28—(31) for a particular set ofw;;} is pre- A. Nonoverlapping power spectrum

sented in Fig. 6, and an agreement between simulations and
the analytlcal_ treatment is observed. _ units does not contain a common wave number with a non-
. Note th'a't lifting the de'generacy' ampng the' Hopf b'flijrca'zero amplitudd€or even almost the same nonzero wave num-
tion transitions of the hidden units in the first laye8,  pey More precisely, let us define the power spectrum of the
# B¢, can be achieved in the following two way(@ lifting  \eights to therth hidden units to be diluted and to consist
the degeneracy in the coming weights to these uR{$;R;  of only the following r, nonzero components
[Eq. (11)], (b) lifting the degeneracy in the outcoming {K; Kr,, ... K; } with the following constraint: |K,
weights from these unitsy; #w; in the case of aN:M:1  __ |>1 for any pair of hidden units ands (and also for
architecturgsee Fig. 3 or by choosingw;; #w,, in the case r=s)n

of N:M:P:1 (see Figs. 5 and)6 The prototypical case of this class is the architecture
N:M:1 where the weights for each one of the hidden units

The power spectrum of the weights of any pair of hidden

VI. MORE STRUCTURED WEIGHTS consist of only one nonzero component in the power spec-
The extension of the analytical results from one—trum
component weights between the input units and the first hid- 27K;j
WijzRico{T_ﬂ-(ﬁi , (33)

1.5

which is the generalization of the pure cos case, #4d).
The wave number$K;} are chosen to be relatively prime.

1.0
1.0
A 05 |
0.5 t+1
o 0.0
-0.5
0.0 +—lo—0o ‘ ‘ ‘
0.100 0.102 0.104 0.106 0.108
-1.0 : . .
-1.0 -0.5 0.0 0.5 1.0
FIG. 6. A; vs B for the architecturé\:3:2:1 with sin activation Gt
function. The weights from the first hidden layer to the second one,
{w;;}, are given bywy;=1wy=1w,=0.9W,;=0.8. Analytical FIG. 7. Numerical results for't! vs ¢! [see. Eq.(1)] for

solution forA;, Egs.(27)—(32) (solid lineg and simulations of this  N:3:1 with N=500, B;~1.653. and K;=31,117,231, ¢i\/§
network withN=1000 @). =0.1,0.05,0.01R;=1.0,0.9,0.8 forj =1,2,3.
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_ FIG. 8. The power spectrum of the outputf3:1 defined in FIG. 9. TheN:2:1 networks are classified in the two dimen-
Fig. 7. sional spac®;=R,;/R;; andD,=R;,/R,,. The presented simu-

) ) o lations are forD,=D,=0.6, N=512, 8,=1.18;, K;=177, K,
Results for the stationary solution are similar to that of Eq.= 131,
(12), but with the following modifications. The critical gain, . ) . o
for each one of the hidden units, is a function of both theeach one of the hidden units consists of onlynéte random
amplitude and the phasqsi :ﬁi (R, #). For the case numberof components with nonzero amplitudes. In such a
Cc Cc 1 - . .
N:3:1, forinstance, one can show that realization bOtH(fm andKrm— Ks, are ofO(N).

B. Overlapping power spectrum

BL= i Tr—(ﬁ' (34) The power spectrum of at least one pair of hidden units
NR; sin(m¢;) has some common components with nonzero amplitudes. It
) . . ) is clear that the case of random weights belongs to this class.
where in general the critical gain increases with the absomt?—lowever, let us first analyze analytically the following pro-

value of ¢. Second, forK>1 one can show that a phase gtypical case. The architectureNs2:1 and theweights for

shift, ¢, in the weights results in a frequency shift, each one of the two hidden units consist of only two nonzero
pure cos[see Eq.(11)] with the wave number&; andKs,
K—K—¢ (35)  Which are relatively prime. The four amplitudes &Ry ,

where the index labels the hidden unit anfdindicates the
in Eq. (12) [with some higher harmonic corrections of wave number. One can show that the critical gains for the

O(1/K)]. Since a randomy is irrational, the flow is now two hidden units are given by

quasiperiodic,d,=1, instead of periodic as for th¢=0 5 >
case,d,=0. Each one of the hidden units becomes nonzero Bl= 1 [ = B2= 1 [ (36)
at a different gain following Eq(34), and acts as an inde- ¢ N(Ri1+Rzp)" 7€ N(Rz2+R12)
F\Eggﬁ%gs;”ggrér’]\l doiieth:;]?lﬂﬁ;ieée (E Zr)] '?ﬁgrﬁg beft is clear that in the case thHt;, for instance, dominates the
hidden unit that undergoes a transitim(;t n,ece,ssarily the POWer spectrum of both the weights for the first and the

. . . 2 second hidden units, the power spectrum of the time series
one with the largest amplitud&lumerical results foN:3:1

: generated by the network consists of only one nonzero com-
with N=500, andK;=31,117,231¢;12=0.1,0.05,0.01 and onentK; (plus higher harmonic termsBoth hidden units
R;=1.0,0.9,0.8 fori=1,2,3 are presented in Figs. 7 and 8. P 1 (plus hig ! e ! un

E h f the hidd its tHe= hi . ~-are locked ontd<,. For general amplitudeR;; , one can run
r?r eaE[: 'ong 8 t % 1a e?' units tkﬁ—f %h This attracto; IS itteratively the equations for the amplitudes of the solutions,
characterized by a dominating peak of the power spectrum E{Aﬂ-“} as a function of{A%}, similar to Eqs.(10—(12).

K;— ¢; with additional higher harmonic terms. . . SN
Note that since the power spectruiy , of cog2m(K; More precisely, the time series is given by

—@)/N] decays asymptotically a@K_Kjoc1/|K—Kj|, the t 2 2 2Kt
constraint thatK; — K;|>1 is necessary for each hidden unit S=tan '6;1 tan ,Zl AijCOE{ N )
to behave as an independent oscillator. This is indeed the

case for finiteM, N—c and where the power spectrum of and the iterative equations for tiAg; are given by

| o

N 27K,
Aﬂ:ﬂlCOiKnt):ﬁRmnE CO{ N .
=1

2 2 .
tanh{ BZl tam{ IZl Ad cos( ZWK'TM) } ] . (38)
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-0.20 " YT 5o 070 020 I;IG. 11. The logarithm of the power spectrqm of the Ioca] fields
g BZL,W;;S;, [see Eq(1)], measured in simulations &f:2:1 with
_ _ N=500, K;=131,177, ¢1182=0.1, ¢1,N2=0.9, ¢,2=0.2,
FIG. 10. The same as Fig. 9, but widy=D,=0.3. $on2=0.4, R;;=1.0, R;,=0.2, R;;=0.1, R,,=1.0, and g

=5p.. The dashed line is for the first hidden unit and the full line

The iterative solution of Eq(38) indicates that the two- .
is for the second one.

dimensional spacB ;=R,;/R;; andD,=R;,/R,, splits into
the following two regimes. In the first regime there is only

one attractor in which the two hidden uni@nd the output =0) is similar to the overlapping two-component case in the

are locked onto one of the componerks, or K. Hence, the following sense. As the gaifl increases, some of the hidden

. nits undergo a transition to their common dominated wave
number of nonzero components in the power spectrum of 9

: : . numberK, for instance. Thal, of the output is one(The
each one of the hidden units and that of the output is equal toquation for the critical gain is similar to E€36) but the

T o e e hopcBfetof ¢ and Tt of g harmonc trs n e weghs
ponents in the power spectrufiNote that in simulations in a have .to be taken into accoynis the gain increases, Itis
subspace of the second regime it was found that both of th lausible that a second wave number is taking place and the

atractors with one or two nonzero componens exdsie- g Gy 28 T8 S EEETAT R COTE RS B e
sult of a simulation of 512:1 in thefirst regime is pre- P y

sented in Fig. 9, where the power spectrum of the time serig@r€ N the case of random weights.

generated by the output consists of one nonzero component.
A result of simulation in the second regime is presented in VIl. CONCLUSIONS
Fig. 10, where the power spectrum of each one of the hidden

units consist of two nonzero components. The properties of time series generated by multilayer net-

works consist of one and two hidden layers, are studied ana-

A similar picture occurs where a pure cos is replaced bMytically and numerically. The detailed analytical treatment is
one component in the power spectrum, E83). For the limited to the architecture:2:1,N:3:1, andN:3:2:1. The

regime where both the hidden units are locked onto one of . . . .
. . main results at high gains but far from saturation where the
the components thd, is equal to one, and in the second
regime thed, of both the hidden units and the output unit
(the time seriesis equal to two. Note that in contrast to the
nonoverlapping case where each hidden unit behaves as an
independent oscillator witd,=1, here thed,=2 for each
one of the hidden units and for the output, and furthermore
the hidden units undergo a transition to a nonzero amplitude
simultaneously at the same gaiResults of simulations for
N:2:1 with N=512, K;=131,177, ¢11¥2=0.1, ¢1,\2
=0.9, ¢,1\2=0.2, ¢\2=0.4, B=5p, for two different
sets of amplitudes are presented in Fig. 11 and Fig. 12. In
Fig. 11 thed,=2 for each one of the two hidden units,
where in Fig. 12 thel,=1.
Note that the critical gain is given hgB,<2/N [see Eq.
(16)], where in simulation3 was fixed to be 0fO(1) and
only B, was increased. This was done in order to enlarge the
regime of the gain where the output is far from saturation, F|G. 12. The logarithm of the power spectrum of the local fields
output— 1, which is the bit-generator caf&2]. Simulations BE}\':lwiij, [see Eq.(1)], measured in simulations fdx:2:1
indicate that the above picture, that the maxinda=2,  with N=500, K;=131,177, $1;1/2=0.1, ¢1,v2=0.9, ¢1\2
holds for 8,>508;, for N=500. =0.2, ¢»2=0.4, R;;=0.8, R;,=0.2, Ry,;=0.3, R,=1.0, and
The generic time series generated by the output of a nef3=5g8.. The dashed line is for the first hidden unit and the full line
work N:M:1 with random weights Wj; (without biasP, is for the second one.

1.0

log,,[P.(K})]

300.0
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output is almost 1 are as follows: possible scenarios. In the first scenario, the hidden units are

(& The d, is only a function of the number of hidden locked onto one of the dominated common components of
units in the first hidden layer. More precisely, thg in- the power spectrum such that ttig of each hidden unit and
creases with the gai and is bounded by the number of that of the output is equal to one. In the second scenario, the
hidden units in the first layeat least far from saturation(b)  d, of each hidden unit and that of the output is equal to two
Translating solution schematically mirrors the architecture ofpesides a plausible attractor with=1).

the network itself: Welghts in the lowest level are acted upon  There are still many questions to be answered, in particu-

by the activation function of the first hidden units, and in|ar the nature of the solution at highnear saturation and in
turn acted upon by the activation function of the second hidparticular with periodic activation functions like sin.

den units, etc(c) Increasing the number of hidden layers
changes the critical gain dramatically. In general, the critical

gain iscN~Y*D ‘wheres is the number of hidden layers. ACKNOWLEDGMENTS
(d) In the case of nonoverlapping power spectrum, each hid-
den unit is an independent oscillator witllg=1. Thed, of We thank D. Kessler and W. Kinzel for fruitful discus-

the whole network is equal to the sum of independent oscilsions. The support of the Israel Academy of Sciences is ac-
lators. (e) For overlapping power spectrum there are twoknowledged.
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